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ABSTRACT

The horizontal variability of "patchiness' in sea surface temperature

structure is examined on length scales between 0.6 and 76.8 kilometers.

A primary purpose was to test the hypothesis that atmospheric forcing is

a cause of horizontal temperature variance on these length scales. Using

continuous sea surface temperatures acquired in the Central North Pacific

The variability

Ocean, spectra were computed for temperature variance.

in these spectra on seasonal, synoptic, and diurnal periods was then

examined and correlated with changes in atmospheric conditions. Important

results found included a seasonal dependence for the patchiness structure,

a negative correlation between surface temperature variance and wind speed

on a synoptic time scale, and a diurnal variability in patchiness that

may be explained by solar insolation and turbulent heat exchange with the

atmosphere. In conclusion, a strong atmospherically controlled temporal

variability in the small scale horizontal sea surface temperature variance

is found and may explain inconsistencies in earlier observational and

theoretical studies.

M- gae

72 N TN M FW PN 2t



i

CTENREPIIT I PRI P s v - o o

TABLE OF CONTENTS

I, INTRODUCTION ~==c=scecmc o e e cecrecrcccmcc e 12
A.  BACKGROUND ====~== === me oo e ceccmmac s 12

B. PURPOSE OF STUDY =~~c-cc-eeecmemme e cacccccecccccammcecaan 14

C. PREVIOUS STUDIES OF HORIZONTAL VARIABILITY IN SST ----=---- 16

1. OVerview ==-ccccmmommmac e ceccceimaccceae 16

2. Individual Studies ----=-cemcceccccccaaaaao. 20

3. Need for a Unifying Study =--=wemeccomccmammmcaaaas 26

II.  ASSEMBLING AND ORDERING OF DATA SETS ==-==--==-e-=-cmcecacauonx 27
A. DATA ACQUISITION --======mmmmm oo oo ocmeoa 27

B. DATA ASSEMBLY ~--===cemeececcncccaccccccceccaccccccacacaa- 28

C. ATMOSPHERIC DATA =---==c=ccccmcmccmecmmmmacccecmcoccccana-n 30

D. ERRORS IN THE DATA --==--=cccmcamcaccacemmcccacccmcaaccas 32

ITI. STATISTICAL ANALYSIS PROCEDURES =-==-========s-mccamememcaanaa- 33
A. SPECTRUIM ANALYSIS AND DATA FILTERING ---=-=--=e=cceceaunaa- 33

B. SPECTRAL ESTIMATES AND ENSEMBLE AVERAGING --=-==-e-=ce=cae- 36

C. PROCESSING INITIAL TEST SPECTRA: 0.6 TO 76.8km -=--===-n-~-= 37

D. FINAL SPECTRA PROCESSING: 0.64 TO 9.6km ---=-vvce-ccomcan- 41

IV.  DISCUSSION OF RESULTS =-====c-ecmccocccmmmaccccceccaccccacan- 43
A. GENERAL STRUCTURE OF PATCHINESS --~~-=-=-c-ecoccccacaccaan-. 43

B. SEASONAL VARIABILITY IN TEMPERATURE VARIANCE «-ec~--ccaccea 44

C. DAY-TO-DAY VARIABILITY IN TEMPERATURE VARIANCE --<-=ccececx- 47

D. DIURNAL VARIABILITY IN TEMPERATURE VARIANCE ----=w=-e=eecoc- 58

V. CONCLUSIONS AND RECOMMENDATIONS =-==-vee=c-sccmcccmamaaacannas 60




NN WIS P P PTG AN 1t e

4




T T T R g e e

———

TABLE

II.
II1.

LIST OF TABLES

Review of Complex Ocean Temperature Structures ----------<-----
Review of Different Studies in SST Variability -~--------------

Review of Representative Theoretical Studies of Wave Number
Dependence for Ocean Temperature Variance ------------c-vcoeoan

it




u\-,

' .
LIST OF FIGURES |
FIGURE
1. "Smooth'" surface temperature field: 1little or no patchiness
ON 2 MM SCale =-===e==-mmemmoom oo eeecoooaan 15
2. '"Patchy" surface temperature field: strong variability
On a SMAll SCAle ==-=--=mmcemmo oo 15
3. Example of trackline position for each minute SST
observation for Julian date 99 -=--=--==-=-=sc-mcmmmmacccaaeao. 29
4. Example of daily plot of SST along trackline shown
In FIiQUIe 3 =~cecemocmecmccm oo 29
5. Method of linear interpolation from equal time to
€qUAl SPACE -==-======- == m e 31
6. Total temperature perturbation along trackline ------------------ 34
7. Large scale component of temperature perturbation along
trackline (>10KM) =-==-=====c-mmmmmmme e mcoaaaae 34
& 8. Small scale component of temperature perturbation along .
2:! trackline (<10km) --=======mcmmmm e 35
f :l 9. Average temperature variance Spectrum: SPring =------------==----- 38
| 10. Average temperature variance Spectrum: SUMMEr -------=--=-=-=-=-- 38
ﬁ 11. Four-hour temperature spectra depiction with two
. degrees of freedam --=--==--smemeomem e eeiaiaoooeo 40
12. Four-hour temperature spectra depiction with sixteen
degrees of freedom =---=-=-=--=ceamomomo e eeeiaieaaao 4z 2
3 13. Comparison of average summer and Spring Spectra ----------------- 45 i
; 14. Average daily temperature variance at k=1 fm 1 for each day { ]
,‘ Of data ======m=- = e i 46 i
' 15. Spectral slope for average daily spectra for each day of data ---- 48 ,' :
16. Diurnal variation in SST spectra for wave number k=.65 km'lz A
r SPTing CONditions-----oceooom oo a e mceeeedceaeaoas 49 L &
t - 17. Diurnal variation in SST spectra for wave mmber k=.65 oL T %
‘ summer COnditiong -~==--eeecemmmmme oo cimcieicceaaas 50 =

[~ -}




FIGURE

. 18. Diurnal variation in SST spectra for wave mumber k=9.8 km L:
R spring conditions -------==cc--ccaceccccccccccececcceeconcenana- 51
: 19, Diurnal variation in SST spectra for wave number k=9,8 L

sumer conditions =---=e-~--=seccccecceccecmcecccccocecocceona—- 52
¢
E— 20, Correlation between changing temperature variance and
; changing wind speed: Julian days 1-100 -~e=-ecececccacacacacaa" 54
;1 21. Correlation between changing temperature variance and
k changing wind speed: Julian days 180-230 ==~~~<s==-ecccacccac—ax 55
‘ 22. Correlation between changing temperature variance and
f-‘ changing cloud cover: Julian days 1-100 ~-~escs=ccscncccccacaaa 56
v
. 23, Correlation between changing temperature variance and
' changing cloud cover: Julian days 180-230 ~-~--==-ccscececccanus 57
3
&.
y |

ot F

Bablid aohe BN £ o




|
|
F_ % f;i
# 1
‘;
- NOTATION {
g *
- ak’bk Fourier coefficients from fast Fourier transform
. c Temperature in degrees centigrade
- cm “Centimeter

t,.' ak Resolution of spectra
- Ax Spacing between observations ﬂ
; E.r(k) Temperature variance density as a function of wave number i
M1 FFT Fast Fourier Transform
: k wave number in cycles/km
. | km Kilometer i

| ! cycles/kilometer

m meters

‘ SST Sea Surface Temperature

«

f |




Y ¢ A

i

e+ .+ —————

ACKNOWLEDGMENTS

The author wishes to express appreciation to Dr. R. W. Garwood and
Dr. E. B. Thornton, Department of Oceanography, Naval Postgraduate
School, for their time, interest, and guidance throughout this study.
Gratitude is also expressed to Dr. C, N. K. Mooers for his helpful
discussions and review of this thesis.

Finally, I am truly grateful to my wife, Cathy, and to my son and
daughter for their patience, understanding and encouragement, and

without whose help this paper would never have been completed.

11




v e o et e e o+ e g - e

I. INTRODUCTION

A. BACKGROUND
The study of ocean characteristics has long been of interest to men
* of the sea. Early mariners were the first to discover that prevailing

' winds and ocean currents could aid their transits to and from different 4

!
1 parts of the world. These phenomena were carefully noted in ship's logs -
;J and passed on from navigator to navigator so that maximum benefit could ]
b | be made of envirommental conditions. Early seafarers also noted that

3 i conditions were continually changing. Although a clockwise circulation ]

was typically found in the Atlantic, anomalous storms and wave conditions

could greatly modify these conditions on time scales from diurnal to i

seasonal, These men learned more about the sea with each voyage, but it !

‘ : seemed that the variability and complexity of the sea increased in pro-
portion to the quantity of observational data. One reason for this was
that the conditions expected by the early mariners were based on observa-
tions of limited regions of the ocean that included the main trade routes. j

The modern day oceanographer faces the same problems as the early d

' mariners in trying to predict the ocean's various physical properties.

é Studies of the ocean's physical characteristics have increased with the

advent of modern sensors such as CID's, expendable bathythermographs, and T
various satellite radiometers. Nevertheless, the explanation of the com- |

plexity of the ocean's thermal structure still largely remains a mystery. ,

As shown by Table I on ocean fine structure from Federov [1978], the

¢

12




TABLE I - REVIEW OF COMPLEX OCEAN TEMPERATURE STRUCTURES

iso-
anomolies

OBSERVED OBSERVED
STRUCTURAL VERTICAL HORIZONTAL
ELEMENT SCALE (M) SCALE (kM) COMMENTS
1. Quasi- 30-40 180-250 In layers 300-400M
uniform
layers 10-20 30-50 In layers 100-300M
and laminae 10-15 100 In layers 50-500M
2-30 2-20 In layers 1-40M
15 13
1-2 1.5
.1 .2
2.5 17 Double diffusive
convection
2. Micro 1.0 .75 In layers 0-100M
steps in
temperature .1-3.5 .2 In layers deeper
"sheets' than 400M
.1 .05-.2
.1-.15 17 Double diffusive
comwection
3. Temperature 10-100 5-10
inversions
5-20 5-20
5-10 "a few
miles'"
4, Advective 10-20 10-15

. .
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greater the quantity of ocean temperature data and the finer the resolu-

tion, the more complex the spatial structure appears.

B. PURPOSE OF STUDY

The purpose of this thesis is to examine the horizontal variability
in sea surface temperature (SST) along ship tracklines. Federov [1978]
has shown that the temperature structure is a highly variable physical
characteristic in both the horizontal and vertical as shown in Table I.
The horizontal variability in sea surface temperature over small dis-
tances (102-104m) shall be called here '"temperature patchiness.'" This
study primarily focuses on the scales between 0.6km and 10km, and the
results are shown to be different from earlier findings for larger scales.
Figures 1 and 2 illustrate just how '‘patchy' the ocean surface tempera-
ture can be on these scales. This thesis will examine the horizontal
variability in sea surface temperature at scales less than about 10 kilo-
meters (km) and greater than 600 meters (m).

The temperature patchiness is first examined by spectrum analysis
to determine its structure over a range of space scales. From this study,
the change in variability on seasonal and daily scales will be examined
to detemine a possible correlation with atmospheric forcing by the wind
stress, surface heat fluxes, and solar radiation.

The working hypothesis for this study is that atmospheric forcing
strongly influences the small scale SST variability. Both mechanical
forcing by the wind and thermodynamic forcing by radiative and turbu-
lent heat flux at the air-sea interface are expected to be contributing

factors.

14
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An ultimate goal for this research is the formulation of a model for
SST patchiness as a function of atmospheric forcing. This model could
then be used to provide second order statistics (such as thermal variance
ETZ) in conjunction with the first order variables (SST and mixed layer
depth) from a mixed layer model. [Garwood, 1979] The long-range goal
for modeling of this kind is to produce thermal structure analyses and
forecast products which could be used in conjunction with various under-
water detection systems currently being used by the Navy. The use of a
strictly homogeneous ocean temperature structure in the horizontal is a
simplification that frequently cannot give realistic results for the under-

water acoustic problem. The better the ocean can be modeled, the better

environmentally sensitive systems can be used by the Navy.

C. PREVIOUS STUDIES OF HORIZONTAL VARIABILITY IN SST
1. Overview

SST variability has been of interest to oceanographers for many
years. Means for rapidly acquiring sea surface temperature data over a
large area have not been available until recently. Climatology has been
frequently used as the only available representation of the temperature
structure both horizontally and vertically. Most oceanographers realize
this is an oversimplification but it is frequently the only recourse
available. Climatology is based on all types of inputs such as ship in-
take temperatures, bathythermographs, buoy data and ship bucket tempera-
tures. In other words, any observation available is normally used.
Unfortunately, the sea is much more complex than climatology and second

order statistics such as patchiness are not nommally included.

16
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Several studies have been undertaken since the early 1960's to
examine how the surface temperature structure changes and why it changes.
Most studies have covered very limited areas of the ocean and specific
spatial scales of variability. Table II provides a chronology of
various studies that have been conducted. The biggest differences
among these are the methods of data collection and the scales studied.
Studies by McLeish [1970], Saunders [1972], Holladay and O'Brien [1975],
Fieux, et al [1978], and Deschamps, et al [1981] are particularly signif-
icant, but are somewhat inconch;sive. As shown by Table II, there is sub-
stantial disagreement among the investigators. One needs to compare the
results of these observational studies with the theoretical predictions
listed in Table III. The basis for comparison between the various ex-
periments and theories is the constant wave number power law fall off in
temperature variance density. The different results show a fall off in
temperature variance that is proportional to an increase in wave number
to the power (-n), or:

E (k™" 63
where ET(k) is the one dimensional temperature variance density spectrum
in units of Cz-km, k is cycles/km, and n is a dimensionless constant.

The spectrum for thermal variance has frequently been assumed to
have a functional dependence upon wave number that was similar to that for
the Spectrum for kinetic energy. The problem in dealing with temperature
variance density on scales less than 100 km is that this regime is still
considered to be in the domain of '‘unresolved motion' on a large scale
as reported by Woods {1976]. In other words, there is no well-accepted

theory that can explain the variability in temperature that is observed

17

‘ ‘\J

.
Y

Xt

e aa




' -
TABLE II - REVIEW OF DIFFERENT STUDIES IN SST VARIABILITY .
: HORIZONTAL POWER LAW j
u RANGE OF EXPONENT -
i AUTHOR(S) SCALES (M) K™ (n) SOURCE OF DATA ;
1 1. Lafond and 5-70 5/3 Result of internal 1
i Lafond [1966] forcing (as reported
£ by McLeish) ;
i 2. Voorhis and .3-5 5/3 Drogue measurement -
2, Perkins [1966] at 9M
4§ 3. Williams [1968] .01-10 5/3 Measured on FLIP
‘ ’ at 30M
‘ 3 4. McLeish [1970] 3-50 5/3 Surface and airborne
‘,; less than 0 radiameter
; 3 measurements
5. Saunders [1972] 3-100 2.2 Airborne radiometer
P measurements
. 6. Lilly and 4-20 3 Atmospheric temperature
A N Lester [1974]
- 7. Holladay and 3-20 3 Airborne radiometer
O'Brien [1975] measurements
8. Fieux (et al) 1-64 2 Ship bucket tempera-
(1978] tures and satellite
data
9. Deschamps (et al) 3-100 1.5- Satellite data
[1981] 2.3




S

TABLE III - REVIEW OF REPRESENTATIVE THEORETICAL STUDIES OF WAVE NUMBER
DEPENDENCE FOR OCEAN TEMPERATURE VARIANCE

THEORETICAL
POWER LAW -n
AUTHOR(S) EXPONENT K © (n) THEORETICAL BASIS
1. Kolmogorov 5/3 3 dimensional isotropic
[1941] turbulence theory
2. Bolgiano 1.4 3 dimensional/stratifica-
[1962] tion dominated/turbulence
theory
Eye (K)oEp(K)
3. Phillips 1 3 dimensional/stratifica-
[1966] tion dominated/turbulence
theory
4. Kraichnan 1 2 dimensional isotropic
[1967] turbulence theory
F,r(k) (passive contaminant)
5. Charney 3 2 dimensional quasi-
(1971] geostrophic turbulence
theory
6. Garrett and 2 Internal wave forcing
Munk [1972)
7. Lilly and 3 3 dimensional atmospheric
Lester [1974] turbulence theory
Er(k)aEke (k)
19
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on scales less than the Rossby radius of deformation. Nevertheless,

these different studies give an idea of the variability that has been
found on different horizontal scales.

2. Individual Studies

McLeish [1970] attempted to determine on what horizontal scales
the temperature variations became significant. He used both ship and air-
craft radiometric observations from the 7-12 micron infrared (IR) band.
He then calculated temperature variance spectra using the autocovariance
technique of Blackman and Tukey [1958]. The data was low pass filtered
to reduce aliasing, and mean instrument noise for the radiometer was sub-
tracted from all spectra. All observations were taken under similar
atmospheric conditions at various times of the year. Neither time of
day nor season of the year seemed to have any influence on his results.
Bulk SST's were also recorded by the ship for calibration of the radio-
meters. Errors considered to be present in the spectra were either
instrument induced or from atmospheric contamination.

McLeish [1970] found a maximum spectral density at the smallest
wave numbers and a wave number power law dependence of k’s/ 3. This was in
agreement with three dimensional turbulence theory proposed by Kolmogorov
[1941] for the inertial subrange. However, his calculated spectra values
flattened out at an amplitude of .1 Cz-cm at wave numbers between 2 and
5 km-1 or length scales of about 2-3 km. This was the first reported
observation of a flattening in the spectra at higher wave numbers.
McLeish did not believe that this feature was turbulence related, but
due to differences between skin temperature structure and the structure

as measured a few centimeters below the surface. He also believed that

20
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convergence slicks can form on the sea surface which change the sea sur-
face temperature by the inhibition of heat transport to the surface from
below which can lead to temperature differences of up to 1°C on very small
scales.

Stommel and Federov [1967] saw a similar structure in the oceanic
temperature patterns at many different depths. They labeled these patchi-
ness patterns as structure laminae with horizontal length scales between 2
and 20 km and vertical scales of 2 to 40 meters. They believed that this
form of patchiness was most likely related to vertical mixing processes.
Such processes may include mechanical mixing from the wind, breaking in-
ternal waves, and convective mixing from density instabilities which are
related to temperature fluxes at the air-ocean interface and solar
radiational effects.

Saunders [1972] conducted a similar study of temperature structure
in the upper regions of the Ionian Sea. The purpose of his experiment was
to describe the temperature pattern present and to determine the different
causes of such patterns. Using radiometric techniques similar to those
of Mcleish, he observed SST from an aircraft. For comparison, ship ob-
servations were taken over a 250km by 220km area enabling two-dimensional
SST contour plots to be constructed. Comparisons were made with ocean
station data to determine the possible causes of the patchiness struc-
ture, examining in particular the geostrophic flow and general circula-
tion through the area. This information was used to describe advective

effects in the temperature change process. He noted that advection is

a2 25w AT

not uniform and other complexities in the ocean structure, such as small

scale geostrophic flows and wind induced frictional motion, will tend to

21




distort the isotherm patterns and lead to a variable temperature structure.
He further stated that the temperature variance field probably cascades
from large scales to small scales. This is analogous to turbulence

theory and the cascade of energy from low wave numbers to high wave num-

bers in the inertial range.

Saunders attempted to verify the cascade theory of temperature
variance by statistical analysis of the data. He detrended the data by
least square fit and computed spectra over several tracklines of data.
The result was a fall off of temperature variance with increasing wave
number similar to that of McLeish but with a k™2 dependence which did
not fit any of the previously proposed models for geophysical turbulence
as listed in Table III. He concluded that no theory has been accurate in
predicting the temperature variance structure due to the complexity of
geophysical processes. A variety of theories may be required to explain
all scales. Saunders suggested the large scales will be controlled by
rotational effects and small scales by stratification.

The temperature variance was found to be in an equilibrium state

over the three-week time period covered by this experiment. By using a
"filtered correlation" technique, Saunders found that the longer the wave
length or length scale, the more persistent the temperature variance
density, with scales of 25km lasting 2-5 days and scales of 100km lasting
8-16 days. He concluded that the observed time scales of temperature

variance were not turbulence-related hut resulted from advection by

mesoscale features imbedded in the mean flow which are presumed larger

than turbulence scales.,
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Holladay and O'Brien ([1975] conducted a study of small scale
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temperature variability in the upwelling zone off the coast of Oregon.

The study examined the mesoscale air-sea interaction in an upwelling

region as a function of wind forcing and resulting temperature fields. :
The study area including both the coastal upwelling and the open ocean :
domains were presumed to be isotropic and controlled by wind forcing. IR
radiometer data were acquired daily during the months of July and August 1
from low flying aircraft. Ground truth was simultaneously acquired by ;;
fishing vessels using the bucket temperature method. Computer analyzed
daily SST maps were produced by digitizing the data to a one-kilometer 1
grid of the area, and thereby forming two dimensional depictions of SST.
Simultaneous wind data were acquired over the area to study the response
to wind forcing of the daily SST fields. ]

The initial results clearly showed the effects of upwelling on 1
the SST patterns with relatively cool temperatures near the coast. The

decreases in temperature were directly related to the magnitude and direc-

tion of wind which could cause a mass transport of surface water away from

the coast for a northerly wind and result in upwelling. Fronts were also

observed in the data that were thought to be a result of surface con-
vergence. The characteristic that is of particular interest here is that
these fronts were found on a scale of hundreds of meters and not on a
much larger scale as previously thought. The fronts seemed to be formed
and advected by the upwelling process which resulted in local daily
changes in the SST of as much as 5°C. Holladay and O'Brien also deter-
mined variance spectra for their data. First, the three-week mean was

removed from the SST grid to produce daily perturbation fields.
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Two-dimensional spectra were computed using a two-dimensional fast Fourier
transform. The two-dimensional spectrum densities were integrated with
respect to direction to obtain one-dimensional spectra of the data as a
function of wave number. Their results showed a k'3 power law fall off
for wave numbers between 4km-1 and ZSkm-l. Since Charney [1971] indicated
the (-3) fall off might apply to strong baroclinic zones in the ocean, his
theory might be applied in the 7-20km range (corresponding to the Rossby
radius of deformation). However, Charney's geostrophic turbulence theory
does not consider advection in and out of the area of interest. Holladay
and O'Brien suggest other possible influences on small scale SST varia-
bility including solar heating, precipitation, cloud cover, and air-sea
temperature differences and conclude that further research is required to
determine their effects.

Fieux, et al [1978] attempted to correlate small scale SST struc-
tures and currents in the Gulf of Leon. The data were acquired from ships,
satellite radiometers, and bucys, and all sources were combined to give a
single representation of a two-dimensional SST field. Currents were simul-
taneously measured from meters on buoys strategically placed in the experi-
ment area. The results showed that the satellite data did not resolve
diurnal changes in the SST patterns that could be seen in the shipboard
observations. Also, shipboard and buoy observations were hard to compare
due to the different depth of sensors. The ship observations were taken
every 2.5km and the temperature variance density spectra computed. The
fall off of temperature variance density with increasing wave number was
once again observed with an exponent of -2 in the length scale range of

5-80km. The most significant result of this study was the lack of
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correlation of the currents with the SST structure. The lack of correla-
tion could be explained if the predominant currents in the area were geo-
strophic with flow parallel to the isotherms. However, wind-induced
currents should probably have an impact by advection as suggested by
Holladay and O'Brien.

Deschamps, et al [1981], using IR data from various polar orbit-
ing satellites, tested the feasibility of using satellite derived SST
data for examining mesoscale SST structures. The resolution of the
satellite was typically .1°C/km2 for the area under the nadir of the radio-
meter. This resolution was thought to be sufficient for the scales in-
volved. The idea of using the satellite was based on the need for
observing SST over large areas in a short period of time., Assuming the
temperature fields to be random, Deschamps, et al computed statistics on
the temperature variance density, thus providing information on the
scales and magnitudes of the temperature variability. They computed
temperature variance spectra by use of a Fourier transform method and
obtained the best fit for the kP power law as before. Two range scales
were examined: 40-100km and 3-30km. In both ranges, the value of the
exponent (p) varied from 1.5 to 2.3 with a mean of 1.9 for large scales
and 1.8 for the smaller scales. They found no geographic or seasonal
dependence. These results compare favorably with the results renorted
by Saunders, [1972] and Fieux, et al [1978].

In comparing the results to turbulence theory, Deschamps, et al
encountered the same difficulty in looking for a theory that can explain
the fall off of variance in this range of scales. Causes of temperature

variability on these scales remain undetermined. Possible sources of
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energy and corresponding scales include wind waves (100m), atmospheric
systems (1000km) and baroclinic instability based on the internal radius
of deformation (10-50km in the open ocean), none of which can be complete-
ly responsible for such structures. It is believed that turbulence theory
has failed because of differences between geophysical and hypothetical
conditions. Further observational studies and more realistic theoretical
studies are needed to explain the small scale variability.

3. Need for a Unifying Study

Based on inconsistencies found in the literature, there is a need
for a closer examination of sea surface patchiness structure at smaller
spatial and temporal scales. By resolving the temporal variability of
horizontal patchiness, an explanation of the diversified results from

observed and theoretical studies may be possible.
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II. ASSEMBLING AND ORDERING OF DATA SETS

A. DATA ACQUISITION

The data used in this study were acquired by the USNS Silas Bent
between April 1976 and August 1977 during operational cruises in the
Central North Pacific Ocean for the Naval Oceanographic Office
(NAVOCEANO). Sea surface temperature was continuously recorded at ten-
second intervals along the ship's trackline and logged on data tapes
with position and time of observation.

The temperatures were measured with an HP2801 quartz thermometer
mounted in an HP2850C container at a depth of 5m on the ship's hull. With
a ten-second gate time, a quartz thermometer of this type is designed to
have a potential resolution of 10'4°C. The main advantages of this type
of thermometer are the stability of the sensor, the extremely high tempera-
ture resolution, the digitized presentation of data, and the compatability
with other recording equipment. Its main disadvantages are the difficulty
of field calibration and the possibility of instrument failure due to hull
vibration while in operation. The addition of the mounting receptacle on
the Silas Bent has made the quartz thermometer very useful for SST ob-
servations. In this case, temperatures were recorded to the nearest
0.01°C and positions to the nearest 0.1 minute of latitude and longitude.
Prior to sending the data tapes to the Naval Postgraduate School, the
temperature data was one-minute averaged by a NAVOCEANO so that the tapes
arrived with the temperature data at equal time intervals of one minute

for analysis.
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B. DATA ASSEMBLY

The data were formatted on the magnetic tapes by block area coverage
and had to be organized into a useful form for analysis. This was accom-
plished by a sorting procedure that reordered the data into a time se-
quential format. Figures 3 and 4 are examples of the raw reordered data
trackline position and sea surface temperature profile. With the data in
this form, their continuity was checked and data gaps noted for future
reference. A total of 38 full or partial days of data at minute intervals
were recovered. In the 38 days, three seasons are depicted: winter,
spring, and summer. This pemmitted a cursory evaluation of seasonal
differences in temperature variability.

The longest continuous strings of data were selected for the initial
analysis. These included two three-day periods: omne in the spring of
1976, and the other in the summer of 1977, The first period was from 7
to 10 April 1976 during cruise 343615 of the USNS Silas Bent. The ship
steered an average course of 295T and maintained an average speed of
12 knots over the period. The trackline covered was from 23N 161W to
30N 179W, and the observations represented average spring conditions in
the Central North Pacific Ocean. The second set of observations to be
analyzed were selected to provide a significant seasonal contrast. The
second period covered 18-21 July 1977 during cruise 343722 of the Silas
Bent. For this set of observations, the ship maintained an average course
of 085T and speed of 15 knots. The trackline coverage was from 33N 149E
to 36N 170E and represented average summer conditions in the Central North ;

Pacific Ocean.
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The first procedure was to convert the data to an equally spaced

format. The conversion to equal spacing is required for statistical analy-
X sis in wave number space. The data were converted to 300m intervals by

use of a simple linear interpolation scheme for temperature using the

A ¢ i n, gt sbnataniot it N s aeh,

| logged positions and equal time intervals to determine distances, course,
and speed along tracklines, thereby converting digitized temperatures at
¥. equal-time intervals into equal-space intervals (Figure 5). No loss of
resolution could be detected in the newly digitized data set when com-
pared with the original data. All of the other days of data were handled
in this way with data gaps being interpolated individually. In some

cases very short records would result in discontinuous pieces of data.

In other cases, the ship would stop for an oceanographic station, and
the position on the trackline would resume with no spatial gap. In all

l cases, the times of data voids were accounted for in subsequent time

A

i scale analyses of the small scale temperature variability.

o C. ATMOSPHERIC DATA

Atmospheric conditions were also obtained for the periods of the
SST observations. They were taken from the National Meteorological
Center's (NMC) northern hemisphere surface pressure charts, and based

on ship reports and camputed pressure gradients in the vicinity of the L

Silas Bent. These charts were available at six hourly intervals for all
the days covered by the SST data. The atmospheric variables of interest
were pressure, cloud cover and wind velocities. These variables were

selected because of possible impact on the SST structure.

The primary deficiency in the meteorological data is that the actual
observations from the Silas Bent were not available to NMC. The
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conditions for the ship location had to be interpolated from available

Rudaks " e

ship reports. Therefore, the atmospheric conditions are only estimates
of what the ship was actually experiencing. This deficiency is not be-

lieved to be too serious for this initial study.

D. ERRORS IN THE DATA
f; Possible errors can arise due to the methods used to gather and

assemble the data sets. The problem with maintaining the absolute accu-

’;4 racy of the quartz thermometer has already been mentioned. This error is
not a problem because only the relative temperature or perturbations from

a mean temperature are actually analyzed. There also is some degradation

of the data due to converting from equal time to equal space. This should
,‘ not be significant because the ship usually maintained a steady course and
. : speed. Finally, errors that might be induced in the atmospheric data
should have little consequence since the purpose of the study is to look

' only at general trends in the atmospheric forcing.
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III. STATISTICAL ANALYSIS PROCEDURES

A. SPECTRUM ANALYSIS AND DATA FILTERING

Spectral analysis and filtering was performed using the radix 2 fast
Fourier transfer (FFT) decimation algorithm of Sande and Tukey [Brigham,
1974]. The algorithm was programed as a library subroutine available in
the Tektronics 4052 desk top computer. Using the desk top computer to
calculate spectra resulted in the data being handled at a somewhat slower
but efficient rate, without the dependence on a main frame computer,

To eliminate large scales of temperature variability that were not

being considered by this thesis, a high pass filtering technique was
designed for the data. The technique uses Fourier series elimination,
[Bath, 1974], to filter out the low frequency temperature variance spectra

from the total signal, leaving the higher frequencies to be analyzed,

The entire data length of 2048 points, representing about 600km (Figure 6),
was high pass filtered to minimize the end effects which result in

spectral leakage. The data were demeaned and Fourier analyzed using the

Iai atate

§ FFT algorithm. Fourier coefficients at frequencies greater than the fre-

quencies of interest were then set equal to zero and the resulting Fourier
spectrum inverse transformed by the FFT to reform the low pass time {
series signal comprising the larger scales of temperature variability ]

(Figure 7). The low frequency time series was then subtracted from the 1

B T N A

total temperature signal (Figure 6) leaving the scales of interest for

the analysis (Figure 8).

|
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The scales of interest for the study were determined by experimenting
with the data sets and observing how the variability seemed to change at
different spatial scales. Since the small scale variability was of in-
terest, scales of 76.8km and less were initially chosen representing a
filter cut-off at .08 km’l. When smaller scales were to be analyzed,
the filter cut-off was increased to 0.62 ™! corresponding to a wave
length of 10km.

For tracks of data with less than 2048 points, a similar method of
filtering was used to eliminate the large scale variability based on
Fourier coefficients for either 512 or 1024 data points. Filtering the
data is designed to exclude large scale variability and reduce spectral
leakage from end effects without inducing errors in the small scale

tenperature patchiness patterns.

B. SPECTRAL ESTIMATES AND ENSEMBLE AVERAGING

Having filtered out the low frequency components of the temperature
variance, the modified data was initially divided into eight 256-point
segments, covering scales up to 76.8km, for input into the FFT. The FFT
algorithm was used to calculate raw, one-sided power spectra of tempera-
ture variance density on each segment as given by equation 2,

Ep(k) = 2(a +by %) (2)
Ak

where ET(k) is the power spectral estimate for temperature variance
density in units of Cz-km at wave number k in cycles /km, (km'l). The
Fourier coefficients A and b, are obtained from the FFT for a particular

wave number k. The resolution Ak of the spectra in wave number space
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equals 27/Nax, where N is the number of data points used and Ax is the

300m spacing between data points. The highest wave number that can be
resolved is based on the Nyquist frequency and equals = /aX or about 10.5
k™! for the data set.

The raw spectral estimates were ensemble averaged to increase the
statistical stability in the spectral results. Assuming that the tempera-
ture is a random process with a Gaussian distribution, the chi-square
distribution can be used to form confidence limits on the spectral
estimates. Each raw spectral estimate contributes two degrees of freedom
to the average spectral value of the process. Ensemble averaging of eight
spectra results in each spectral estimate having 16 degrees of freedom
since the degrees of freedom are additive. By ensemble averaging, the
statistical stability of each spectral estimate is improved and the con-
fidence interval becomes narrower. Ninety-five percent confidence limits,
based on the degrees of freedom in each spectra, have been used exclusive-
ly in this study and are plotted on most spectra. Examples of average
spectra, covering two three-day periods, with 48 degrees of freedom are
depicted in Figures 9 and 10. Seasonal and daily variations in temperature

variance are examined by comparing averaged spectra.

C. PROCESSING INITIAL TEST SPECTRA: 0.6 TO 76,8km

Having designed the method to be used for determining spectra, the
two data sets selected for initial study could now be processed. Both
records spammed three days during which time approximately constant ship
course and speed were maintained, with no significant (greater than 10

minutes) gaps in the SST record.
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Each three-day data record was split into three 614.4 km sections of
1048 SST values. Contributions to the temperature variance on scales
greater than 87.7km were eliminated from each record using the high pass
filter, These modified records were then split into eight sections of
256 points. Temperature variance spectra were then computed for these
sections, providing spectral density information on length scales between
0.6 and 76.8km or wave numbers between 10.5 and 0.08 km-l. A representa-

tive set of these individual spectra (Figure 11) are plotted as the log E

Moo ki s

of temperature variance versus the log of wave number so that if a power
law relationship exists according to eq. (1), it will plot as a straight
line. The vertical bars are the 95% chi-square confidence intervals based
on the degrees of freedom in each spectrum. The confidence interval is
wide since these spectra are based on only two degrees of freedom. The
last spectrum on the figure (case 9) is the averaged spectrum for the
previous collection of eight spectra shown, giving it 16 degrees of free-
dom. It therefore is a more stable statistical representation of the
typical temperature variance structure on an approximately one-day average.
The average spectra for each three-day period in the initial data
set were computed in a similar manner and plotted (Figures 9 and 10)
based on 48 degrees of freedom. The initial study of temperature variance
structure was based on the analysis of Figure 9 and 10 and individual

spectral depiction as shown in Figure 11. The results to be derived from

the data are the general characteristics of the temperature variance 1
spectra, including its slope, magnitude, and how it changes daily and ;j
seasonally. These results can then be compared with atmospheric con- 5

ditions at the time of the observations. Atmospheric conditions for
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the ensemble averaged spectra were determined by averaging wind and cloud
conditions for the same periods included in the spectra. The changes in
average atmospheric conditions were then compared with changes in tempera-
ture variance in order to test and refine the working hypothesis. These
results were used to design the final processing method for the rest of

the data,

D. FINAL SPECTRA PROCESSING: 0.64 to 9.6km

Based on the preliminary analysis it was decided to refine the analy-
sis procedure to focus attention on the shorter spatial scales. This
would then permit the examination of changes in SST patchiness on time
scales of several hours, and any diurnal cycle in horizontal temperature
variance could be resolved. The remaining shorter sections of data were
also included by use of a modified high pass filter. Variance on scales
greater than 10km was removed from all input data sets. The modified
data sets were further divided into segments of 32 data points, which in
turn were transformed into temperature variance spectra representing
scales 0.64 to 9.6km, or wave numbers from 0.65 to 9.8km'1. Spectra with
16 degrees of freedom for each spectral estimate were computed for each
group of 256 data points as shown in Figure 12, This figure shows
tenmperature variance for the same time period and trackline as Figure 11,
but with greater statistical stability, enabling a more reliable compar-
ison with local apparent solar time and changing atmospheric conditions.
One difficulty encountered in the final processing was the large number
of gaps in the temperature data that prohibited complete diurnal cover-
age for most days. As a result, day to day comparisons of temperature

variance were frequently limited to fractions of complete days.
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IV. DISCUSSION OF RESULTS

A. GENERAL STRUCTURE OF PATCHINESS

The general structure and magnitude of the temperature variance is
seen by examining the average spectra derived from the data sets. The
results of this study show many of the same characteristics of the gener-
al SST patchiness structure previously determined in experiments. There
is a continuous decrease in temperature variance spectra with increasing
wave number, similar to the cascade of energy down to smaller turbulence
scales as theorized by Batchelor [1959]. The slope of the fall off on a
log scale fit to eq. (1) was determined from a least square fit of the
spectral estimates. The fall off slopes for this study ranged from -1.5
to -2.5, which are in agreement with the results of Deschamps, et al,
[1981]. Figures 9 and 10 are representative average spectra from two
different seasons included in the data set. The slopes of the two
spectra are -2.09 and -1.95 respectively, which compare very well with
the results of Fieux, et al, [1978] and Saunders, [1972]. Figures 11
and 12 are similar and show more structure, but with larger confidence
intervals due to fewer degrees of freedom. In general, these results
seem to indicate that the shape and magnitude of the spectra are com-
parable to the results of earlier studies.

One important difference in this data is the lack of a significant
flattening of the spectrum at wave numbers greater than three L.
There is a definite indication in Figures 9 and 10 that the spectra do

have a slope change in this region, however., It was hoped that the
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final analysis, concentrating on scales less than 10km, would permit a
closer scrutiny of this feature.

As seen in this study and in previous studies, there is no equilibrium
theory that explains the variety of slopes found for the measured
spectra. The probable explanation for these differences may be re-
vealed by the following sections which show how the temperature variance
changes on a relatively short time scale. The power law fall off at a
constant rate proposed by most theoretical studies of turbulence phenom-
ena is therefore not a constant, but varies with the changing structure

of the patchiness. In other words p=p(k,t) in eq.(1).

B. SEASONAL VARIABILITY IN TEMPERATURE VARIANCE

The seasonal variability in SST variance was examined by comparing
spectra from different seasons of the year. The results are shown in
Figures 13 and 14, In Figure 13, the average three-day spectra from the
spring (Figure 9) and summer (Figure 10), are plotted on the same set of
axes with 95% confidence intervals based on 48 degrees of freedom. The
magnitude of the temperature variance for summer conditions is greater
than spring conditions by almost one order of magnitude for all wave num-
bers considered. These spectra only cover two representative three-day
periods of data. However, Figure 14 shows the least square fit value
for all of the average daily spectra at wave number one (6.3km) plotted
against day of the year. The straight line on the figure is a least
square fit. Again, an order of magnitude increase in the average tempera-
ture variance can be seen in going from average winter to average summer

conditions.
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Based on the hypothesis that atmospheric forcing has a direct influence

on the patchiness structure, this result is not surprising. Generally,
there is more mechanical mixing and possible convective mixing due to
synoptic scale storms taking place during the winter and spring seasons,
which in turn may reduce the intensity of horizontal patchiness. To rigor-
ously verify this result, more observations from all seasons are needed
and the above analysis repeated.

The average slope of the variance structure also changes from season
to season, Figure 15, Although at least square fit of these data only show
a minor decrease in slope from winter to summer, this result can be ex-
plained by an increase in variance at small spatial scales during the sum-
mer, and is consistent with the influence of seasonal atmospheric conditions
on the patchiness structure. This finding of greater seasonal variability
in temperature variance on the smaller spatial scales may help explain the

differences in slope values reported in previous studies.

C. DAY-TO-DAY VARIABILITY IN TEMPERATURE VARIANCE

Daily changes in SST variance are determined by comparing time series
of spectral estimates for the same wave number in each spectra. Representa-
tive variability in temperature variance on this time scale are shown in
Figures 16 and 17 for spring and summer conditions, respectively. These
graphs show how the variance changes within each day and between different
days as represented by the various curves. The magnitude fluctuates from
one day to the next by as much as two orders of magnitude, Figures 16 and
17.

Figures 18 and 19 cover the same periods of time but show spectral

values for wave number 9.8 km - (0.64km). Note that although the magnitude

47




e AN i ' . - _ ks PP E P WP oy

‘pyep pozzord oyl Joj 113 agenbs
Jseal e sT aul] Iy3teaas oyl °31J denbs 1SeS] e U0 paseq
viep jo Aep yoeo 10j eaydads A{lep 9deiaav 103 adois reai1dadg Sl UNOILA

gVEX ML 40 Xvd NVITAP B |
022 002 08y 291 ort 021 0071 ) 09 oy (.24
+ 4 $ - + + $ -+ +- 7=
-
* i
* —
4 g 2 4 o+ o .
s N ¥ Nk? = <
“ N
L ¥ % | m
& 4 M
f =
' ] m
}¢
4 ﬂ.n;
4
4
. - . DTSR TR N R R Rt



R S L

S -

*aury ur eaydads aa13Indasuod
Jo durouonbas oyl aledrput 301d Syl UO SIdQUNU Y] " SUOIFTPUOD
durads "T_s_ G9°=) Joqunu 9ABM J10J ea3dads JSS UT uorierieA {ewInid 91 N9Id

Xvq 40 ¥NOH INSUVLAV TVOOT

i1e

1J %86

21

»e

p—

o

(t-,0) (59 )% o1

1

mathakie i ons il

49




‘amr) Ul rIIJads SATINDISUOD
Jo saduonbas ayl oi1edIpur joid oyl uo sIoqunU Iyl “SUOTITPUOD
launms J upf §9°=Y Joqunu SABM 103J va3dads JSS Ul UOIIRTIRA [RUINIQ  “/T PINDIA

1

Avd 40 BNOH INMIVAIY TVOOT

ERZAE-CANE "ANE ) SIS ) S ] SANE A RS | AR AENN A SRS S-S T

{
Plegd

50

(=-,2) (59* )2

- e p— - ————

- - mm——— | —  —— —_— -

N - o . U SO
P! FORRPORT-.. -t R L - WO PSS SR S-SR




‘91 ‘314 se owes 301d uo SsadquMy °SUOTITPUOD
Burads “H-Ex 8°6=) Joqunu SABM 10J evi1Dads ]SS UTI uoIlleTdeA [ewanig °81 NOIA

Xv@ 40 ¥NOH INTMVILV TVOOT

—wrHertertertyrtrtrtert— b —t— =4
EARRANKAN &

51

AR AP ARSI PRI  meveR - S~ N AN

[ =07, Vg S, _ N S S-S r e ek i e & st ki on b it




o
-
i
i

et -

e &

Jlaunms

L e ars

L1 814 se aues 301d uo sioqumy °SUOTITPUOD
(U0 876=Y Joqunu SAem 103 e1109ds [SS UI UOTIR[JIBA [BUINIQ °6] MOl

V0 40 WNOH INFYVIAV TVOO1

T A e NS P
.

by

WA

52




. . . i g L,
td N v h
- """""""‘W‘ »fu;ﬁ;s.ur. ejaiamaye

of the temperature variance has fallen off with the increase in wave
number from 0,65 to 9.8 km'l, the general shape of the day-to-day varia-
bility has not markedly changed with increasing wave number. This is
interpreted as an indication that whatever is causing the change in
temperature variance is having similar effects at all wave numbers in
the limited range studied.

All of the day-to-day plots of spectra exhibited similar variability
on what may correspond to the atmospheric synoptic scale. A possible
explanation for these fluctuations may therefore be changes in atmospheric
forcing over the sea surface. Based on the meteorological data avail-
able, day-to-day changes in cloud cover and wind speed were correlated
with the day-to-day changes in temperature variance. The changes in the
daily spectral value at wave number one was chosen as a representative
measure of the variation in the total temperature spectra. Day-to-day
changes in temperature variance are shown in Figures 20 - 23. The plots
are similar to Figure 14 with consecutive points comnected. The symbols
represent the average daily changes in the atmospheric variables (wind
speed/cloud cover) being correlated. The figures show how the atmospheric
conditions were changing compared with changes in the temperature
variance. Figures 20 and 21 show the visual correlation with wind con-
ditions, and Figures 22 and 23 with cloud cover for each day in the data
set.

The effects of wind changes are most obvious. Decreasing winds
correlate with increasing variance and increasing winds correlate with

decreasing variance in almost every case examined. The changes in cloud
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cover do not seem to correlate well with the changes in variance for any

time of year. It is thought that the wind correlation is quite signifi-

cant and is a strong initial verification of the general hypothesis.

D. DIURNAL VARIABILITY IN TEMPERATURE VARIANCE

In addition to the day-to-day changes in temperature variance spectra
(Figures 16 - 19), there are diurnal or 24-hour changes in the tempera-
ture variance structure. Similar diurnal variations in SST spectra were
previously reported by Moen [1973]. These diurnal changes can be as
large as two orders of magnitude. The spectral magnitudes appear to de-
nend on the local apparent time of day, suggesting that the diurnal heat-
ing cycle may be the cause.

The general structure of the daily change shown in Figures 16 - 19 is
very representative of the diurnal changes seen in the rest of the data
analyzed in this study. The patterns seem to indicate a cycling of the
variance spectra throughout the day, with some days possibly having a
semi-diurnal response. There also seems to be a wave number dependence
in the diurnal cycle because larger wave numbers have more variability
as seen in comparing Figures 16 with 18 or 17 with 19. The change in
magnitude of the variance from spectrum to spectrum within a day also
is reflected in a slope change in the log-log spectral plot. The varia-
bility in slope caused by large diurnal fluctuations at smaller spatial
scales may help explain why theoretical studies of the temperature
variance structure differ from observed results. Attempts were made to
compare changes in hourly variance spectra with atmospheric conditions,

similar to the day-to-day changes. However, the meteorological data

v S
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could not be resolved sufficiently accurately in time to permit any
conclusions more specific than the observation that wind changes do
affect the diurnal variance cycle. More atmospheric data are needed to
gain an insight into what is causing the diurnal variation in the patchi-

ness structure. It is assumed that solar radiational fluxes, cloud cover

and wind speed changes could probably be related to the changes in temper-

ature variance if better observations were available.
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V. CONCLUSIONS AND RECOMMENDATIONS

Thirty-eight different days of horizontal surface temperature varia-

bility structure were examined by comparing changes in variance spectra

on different time and space scales with changes in atmospheric conditions.

The hypothesis set forth was that atmospheric forcing induces changes

in the temperature variability structure. The results showed that the
temperature variance spectra change by one-to-two orders of magnitude on
seasonal, synoptic, and diurnal time scales. The seasonal and synoptic
changes in variance were correlated with changes in the atmospheric mix-
ing processes (i.e., wind conditions) at the air-sea interface and thus
seemed to verify the initial hypothesis. The diurnal changes in tempera-
ture variance seemed to be associated with time of day and changing at-
mospheric conditions but only tendencies were observed and no conclusions
made since other types of forcing, such as internal waves [Garret and
Munk, 1975], may also be influencing diurnal changes in the temperature
patterns.

Turbulence theory does not seem to explain the spectral shape as was
pointed out by other studies. The results from this study do agree with
most previously presented works, but investigate further the varia-
bility of the patchiness structure on scales less than 10 km. The
temporal variability in patchiness structure may explain why the theories
do not explain earlier observational results. Also, the assumption of
similarity between turbulent kinetic energy and thermal spectra may be

questionable.
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One method of future study of this phenomenon will include an examina-

tion of the terms of the budget for temperature variance which can be
derived from the flux form of the heat equation. Limitations in the

meteorological data prevented a careful analysis of this budget. Through

V2 Ak Al AR Aot s Ak e S 1L P 5 it n 1

such an equation, however, a parameterization scheme for the change in

patchiness structure may possibly be derived and tested under various

atmospheric conditions. Gradient production of variance, diffusion of

variance and surface heat flux production/damping are three terms in the

equation that can be directly related to the effects of atmospheric

forcing., In this way, a more systematic approach to predicting higher

order statistics of the sea surface temperature patchiness structure may

be at hand now that the importance of atmospheric forcing has been

demonstrated.
Another possible experiment would be the design of a method for mea-

suring SST patterns repeatedly over the same trackline to find how one

specific region changes under different atmospheric conditions, thus
The possibility that SST

eliminating any geographic bias in the data.

patchiness is non-Gaussian should also be examined.

In conclusion, changes in atmospheric conditions on seasonal, synoptic,

and diurnal time scales do have a direct influence on the small scale

horizontal sea surface temperature structure. The finding of different

temporal scales in the horizontal sea surface temperature variance help

to explain the inconsistencies between earlier observational and theo-

retical studies.
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